本课件是王嘉庆数学全年班学习课程,里面包含了很多知识点讲解和视频课程,都是可以帮助同学把知识点掌握更好的!
一个特征值只能有一个特征向量。特征值和特征向量都是数学概念,若σ是线性空间V的线性变换,σ对V中某非零向量x的作用是伸缩,σ(x)=aζ,则称x是σ的属于a的特征向量,a称为σ的特征值。位似变换σk(即对V中所有a,有σk(a)=kα)使V中非零向量均为特征向量,它们同属特征值k;而旋转角θ(0<θ<π)的变换没有特征向量。可以通过矩阵表示求线性变换的特征值、特征向量。
若A是n阶方阵,I是n阶单位矩阵,则称xI-A为A的特征方阵,xI-A的行列式|xI-A|展开为x的n次多项式fA(x)=xn-(a11+…+ann)xn-1+…+(-1)n|A|,称为A的特征多项式,它的根称为A的特征值。若λ0是A的一个特征值,则以λ0I-A为系数方阵的齐次方程组的非零解x称为A的属于λ的特征向量:Ax=λ0x。L.欧拉在化三元二次型到主轴的著作里隐含出现了特征方程概念,J.L.拉格朗日为处理六大行星运动的微分方程组首先明确给出特征方程概念。特征方程也称永年方程,特征值也称本征值、固有值。固有值问题在物理学许多部门是重要问题。线性变换或矩阵的对角化、二次型化到主轴都归为求特征值特征向量问题。每个实对称方阵的特征根均为实数。A.凯莱于19世纪中期通过对三阶方阵验证,宣告凯莱-哈密顿定理成立,即每个方阵A满足它的特征方程,fA(A)=An-(a11+…+ann)An-1+…+(-1)n|A|I=0。
感兴趣的同学快来下载学习吧,根据老师的讲解结合自身不懂的地方多多学习一下,一定可以更好地学习知识点。
2022【王嘉庆】数学全年班(0808)知识点讲义视频
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。
-
免费下载或者VIP会员资源能否直接商用?本站所有资源版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿直接商用。若由于商用引起版权纠纷,一切责任均由使用者承担。更多说明请参考 VIP介绍。
-
提示下载完但解压或打开不了?最常见的情况是下载不完整: 可对比下载完压缩包的与网盘上的容量,若小于网盘提示的容量则是这个原因。这是浏览器下载的bug,建议用百度网盘软件或迅雷下载。 若排除这种情况,可在对应资源底部留言,或联络我们。
-
找不到素材资源介绍文章里的示例图片?对于会员专享、整站源码、程序插件、网站模板、网页模版等类型的素材,文章内用于介绍的图片通常并不包含在对应可供下载素材包内。这些相关商业图片需另外购买,且本站不负责(也没有办法)找到出处。 同样地一些字体文件也是这种情况,但部分素材会在素材包内有一份字体下载链接清单。
-
付款后无法显示下载地址或者无法查看内容?如果您已经成功付款但是网站没有弹出成功提示,请联系站长提供付款信息为您处理
-
购买该资源后,可以退款吗?源码素材属于虚拟商品,具有可复制性,可传播性,一旦授予,不接受任何形式的退款、换货要求。请您在购买获取之前确认好 是您所需要的资源